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ABSTRACT

The importance of neutrino processesin the final stage
of stellar evolution is further explored. At T > 3 x lO9 Or
the transfer of radiation may be neglected relative to the
dissipation of energy due to the pair annihilation process
of neutrino production. The equations of stellar interiors
are then substantially simplified and physically significant
solutions may be obtained analytically by application of the
vivial theorem. Under conditions prevailing in massive
(M ~ 30 M;) population I stars (Type II supernova) at
T ~ 6x10° ©K it is found that the rate of stellar contraction
due to neutrino emission processes is close to the speed of
free fall. This occurs at a temperature below that at which
the iron-helium phase change occurs in large scale. Consequently
we believe the iron helium phase change never occurs in Type II

supernova .




I. Introduction and Summary

It is generally accepted that supernovae represent the
final evolutional phase of some stars. To account for the peak

y (1)

luminosity of a supernova (~ 10Y Lg and its total energy
output (~ 1080 ergs) it is necessary to consider the energy
that gives rise to a supernova explosion to be due to the
sudden fusion of a nuclear fuel. This was pointed out
qualitatively by the monumental article of Burbidge, Burbidge,
Fowler and Hoyle(z) and later discussed in more detail by
Hoyle and Fowler(3).

A necessary though not sufficient condition for a nuclear
fuel to be explosive is that the fuel must be capable of
yielding an adequate energy supply in a time less than the
explosive time scale of a star, which is approximately the
time for a sound wave to be transmitted across the star.

This time scale is around 10-100 sec.

On this premise Hoyle and Fowler excluded many possible
nuclear fuels; among these are hydrogen and helium(3).

The time scale for hydrogen burning involves a beta decay time
scale of around 300 seconds; this is quite long. The helium
reaction (30 reaction) is a three body process and the
intermediate product B; is never present in large quantities.
Therefore helium is excluded. As possible candidates for

12 -
nuclear fuel they include C and Ne .
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A sufficient condition for potentially explosive nuclear
fuel to explode was furnished by Hoyle in 19464 . His
mechanism is based on the properties of elements in statis-
tical equilibrium at high temperatures. His idea is as
follows: when the temperature T is below a certain critical
temperature T,, (which is a function of density, but in general
is of the order of 7 BK (billions of degrees K) the equi-
librium configuration is such that over 90% of the constit-
uents is Fe®™ which has the highest binding energy (around
8.4 Mev per nucleon)). This equilibrium configuration (Fese)
is reached at a temperature of around 4.5 BK according to
a recent estimate by A. G. W. Cameron(s). When the tempera-
ture T exceeds T,,., the equilibrium configuration for the most
abundant element suddenly changes from Fe®® to He' (~ 90%
at a temperature somewhat greater than T.,.) which has a binding
energy of around 6.8 Mev per nucleon. Inside a star the center
is hottest and it is therefore safe to assume the transition
takes place somewhere inside the central core of a star.
Since the core is already in statistical equilibrium, there
will not be nuclear reactions to provide the energy for iron-
helium phase change, and gravitational contraction is the
only energy source left. At this temperature the thermal

energy is around 3 x 10!” ergs/g whereas the Fef¢ -~ Het
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transition will require 1.5 x 10l® ergs/g. Therzfore the
transition will take place only at the expense of a gravi-
tational contraction -- and such contraction will not raise
the temperature of the medium until the transition is
completed. This will cause great mechanical instability
and the central core essentially collapses. This means the
time scale for evolution of the central core is comparable to
the time scale for free fall toward the center, so that
hydrostatic equilibrium loses its meaning in such a rapid
evolutional phase.

In the outer region where nuclear fuel is still available,
a collapse in the center necessarily raises the temperature
rapidly -- and because of the steep dependence of nuclear
reaction rates on temperature (the temperature dependence

is roughly exp (——%ézé)(3) a potentially explosive nuclear
-}

fuel will quickly release all its energy, thus producing
an explosion.

Hoyle and Fowler divide pre~-supernova stars into two
categories corresponding to the two types of supernovae.
The pre-supernova star that gives rise to Type II supernova
(mostly found in the arms of galaxies) is very massive
(M ~ 30 MO) and the center of such stars is never degenerate.

(3)

This paradoxical fact was explained in their original paper.
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In such cases the implosion takes place and causes explosion.
Type I supernovae are less massive and the center is quite
degenerate. The implosion never really takes place and the
nuclear fuel undergoes sudden fusion by a process described
in Ref. (3).

In this paper we shall pursue the problem of the struc-
ture of pre-supernova stars of Population I, Type II super-
novae in some detail, including the effect of the recently
discussed annihilation process of neutrino production which
has a higher neutrino emission rate than any other known
processes of neutrino production in stars(lo). Using the
model of Hoyle and Fowler we get different results from
theirs as to the cause of instability of a Population I,

Type II supernova star. However, their main conclusions
concerning nucleosynthesis remain unchanged. We find that
the temperature at which iron-helium conversion takes place

is not reached before the explosion takes place in

the nuclear fuel rich region.

IT. Neutrino Process

-11
A number of neutrino processes have been investigateds6 )

The relative importance of these processes has been summarized
in Ref.(1l1). Here we shall concern ourselves with the

(10)

annihilation process of neutrino production:




which have been shown to be most important in the temperature
regime 10° °K - 10° ©°K. A machine calculation of the rate

(12)
of energy loss due to process (2.l1) has been performed .
In (2.1) the electron-positron pair is created in

equilibrium with thermal radiation. Fig. 1 and Fig. 2

reproduce the result of Ref.(1l2). For a non-degenerate medium

the rate of energy loss du,, (in ergs/cm®- sec) is approxi-
dt
mately given as (11}
- Uy - 4.8 x 10 TIexp (- 1222y, 7 <<g (2.2)
_— ] T 9
dt 9
du 1
- v = 4.3 x 10'® Te9 » Ty >V 6 (2.3)
dt
where T = loe °K and U is the energy density. The subscript

vV 1s used to indicate the fact that this energy is lost to

neutrinos. The effect of degeneracy on (2.2) and (2.3) is

Howevar,
complicated (Fig. 2).Awhen T ~5 x 10° °K, p ~ 10" g/cm®
degeneracy 1s not important(lz).

At T = 5 BK an empirical formula (extracted from
Fig. 1) which describes the neutrino process (2.1) to a satis-
factory degree of accuracy is:

T S,2
) ergs/g-sec (2.4)

dE 7.4 x 102!
‘_V=“—‘—‘"‘P (5x109°K

dt




}

where E is the energy per gram of matter, and the subscript

vV has the same meaning as above.

III. Basic Equations

The basic equations of stellar structure are:

dap _ _, GM

ar ' (3.1)
dr

4L _ gne2 (3.3)
= PE

T _ 3 xp L (radiative) (3.4)
dr 4ac T3 4nr2

where P is the pressure, p the density, M the mass that
is contained inside the sphere of symmetry of radius r,

L is the total flux of energy that passes through the
spherical shell of radius r, E;,is the net energy produced
per unit mass at r, ® 1is the opacity per unit mass. The
rest of the symbols have their usual meaning (all symbols

are defined in Appendix I.) Typical solutions of Egs. (3.1)-
(3.4) may be found in standard text books(13).

Eq.(3.1) describes the structure of a star in hydro-

static equilibrium and Eq.(3.2) essentially defines M.

Egs. (3.3) and (3.4) need special discussion.
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. . (14)
Eq.(3.3) has been extensively discussed . It has been
argued that the energy that is lost to neutrinos is several

orders of magnitude greater than the observed luminosity of

stars. Therefore, we are justified in neglecting the radiation

energy produced per cm®, dL _ dL 1 . the value of &
dM dr 4mr2p

is then zero. § assumes the following form:

¢ - - Pdv _ dE . dE, _ |
= a at g (3.5)

where v is the volume occupied by a unit mass, E is thermal

energy per unit mass; the term _ Pdv _ dE is the rate at
dt dt

which energy is provided by gravitational contraction:

- 9By is the rate at which energy is lost to neutrinos.

Fogtfurther details see Ref.(14).

Eq.(3.4) describes the transfer of radiative energy inside
stars. The importance of radiative energy transfer may be
estimated as follows: if, during the whole life of a star
the amount of radiative energy that flows into a given volume
is small compared to its total thermal energy content, then
the role played by radiative energy transfer is unimportant.
Usually the total amount of radiative energy that flows into

a given volume in the total life time of a star is large

compared to its thermal energy content. But in the case where
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the pair annihilation neutrino process plays a principal role,
this is not true as we shall show below.

At T =5 BK, p = 107g/cm3 (these values are consistent
with the estimate of Hoyle and Fowler for Population I pre-
supernova staﬂ(3), the radiative energy f that flows across’

a unit area in time 6 is given by

b __L ~ L
£ = Ic anrz 9t Zrz O (3.6)

From Egs.(3.4) and (3.6) we have
£z L8 __4ac T3 4t 0 (3.7)

Assuming the source of opacity is due to electron Thomson
scattering, * assumes the value 0.19(15). Other sources

of opacity are relatively unimportant(le). dT may be
dr

estimated as follows: the region where the neutrino process
is dominant may contain masses up to 20M,; the density may
be taken to be 107 g/cm®; the radius is around 10%°cm ; the

temperature at the center is taken to be 5 BK. Therefore,

the average temperature gradient is around

daT 5 BK o
(dgzv 10° cm

Putting the numerical values of the various quantities

into Eq.(3.7) we obtain
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L T 3 |dT
= Znge 07 1.59 x 1o Ea"a;i 8 (ergs/cm?) (3.9)
[} 8
where - . )
= ——————— = s -
Te = Tos og * Pe Toe 9/em%, T, r/10°cm. We may

remark that in general peT® and £p will not be changed very

much in the course of stellar evolution.

The energy that is transmitted (EY”Ng ) into a unit
volume is for Ps = 10, Tg: 5, r, = 10,
= 20 3
ErnansA 10 8 ergs/cm (3.10)

The total energy content is

E ~ E + E

NT s MD

E_, = 3NkT/cm® = 6.23 x 102¢ ergs/cm3 (3.11)
E, = aT* = 4.72 x 1024 ergs/cm®

T = 5 x 10° °K

a5
E = 1.1 x 10 ergs/cm
Ly

8 = 10° sec
where N is the electron number density

<A>
N = =—; = A~ 2

Later we shall demonstrate, assuming that radiative transfer

may be neglected, that catastrophic explosion will occur in a

time close to 100 seconds at T = 5 BK. Therefore neglecting
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the radiative energy transfer is self-consistent.

We now state the vivial theorem which follows from Egs.
(3.1) and (3.2) 17). 1t will be used in deriving the total
energy of the star (Eq.(3.14)).

GMdM _
3pdv = = = <-E
I ! r 3° (3.13)
The total energy of the star (E,.) is
B, % B, +Eg = -3pav + [Epav (3.14)

- -I(ﬁ;’} - 1) Epav

where E is the internal energy per unit mass (in our case
E is nearly all thermal energy), and Ef = U, the thermal

energy per unit volume [ 3P

Ep

The numerical value of (113 _ l) at T = 5 x 10°°K,
Ep

- 1) is usually between 0 and 1.

p = 10" g/cm® is less than 0.1 (See Appendix II).

Now the star may be divided roughly, but unambiguously,
into two parts: the core and the envelope. 1Inside the core
the neutrino process is dominant, whereas in the envelope the
neutrino process is relatively unimportant.

The total energy of a star decreases when the star
radiates energy. In the outer envelope where nuclear energy
is still available,- the radiated energy comes from the burning

of nuclear fuel and gravitational energy is not released to
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maintain equilibrium. In the core this is not so. The only
energy source is gravitational contraction, since in the core
all the nuclear fuel has already burned. The rapid dissipation
of energy through the neutrino process (2.1) causes the core to
contract rapidly, thus decreasing Eqor . Gravitational energy
is released through the decrease of E,;,;, and is radiated away
as neutrinos.

Thérefore, it is logical to write:

_d_ ETOT = _%. av (3.15)
dt “dt
where _ dU, is the rate of energy loss due to neutrinos per
dt
unit volume. From Eq.(3.14) and (3.15) we have
d 3p ) du
= == -~ 1) EdM - - Y]
at J Ep [ 3t oY (3.16)

As we shall see in Appendix II, 3P is not sensitive
Ep

to T and p (and consequently t, the time) in the temperature

and density regime we consider. We may therefore write

3P dE dE
3P _ #) QE gM = - vV dMm
(Note:_ggn = - p gin and pdvV = dM by definition)

Since all radiative transfer processes are negligible
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as compared to the neutrino process, we equate the integrals
for the same spherical shell of mass, Therefore we have
the following equation:

£ 8@, (@,

Eq.(3.18) replaces Eqg.(3.4). The subscript M emphasizes
the fact that the left hand and the right hand side refer to
the same shell mass element.

In deriving Eq.(3.18) we have neglected the role played
by the envelope and also the kinetic energy imparted to the
contracting material of the star. We shall review these points

later,.

IV. General Solution of the Basic Equations

The equation of radiative transfer (3.4) has been

replaced by the following equation (3.18).

A(3P 1) (dE) (dT) _ (dEV (4.1)
Ep aT \dt), at /,
In Sect. II we obtain the form of - 9B, ;g
dt—
-Ey.A ( z )n ergs/gm-sec (4.2)
dt p T

where A and n are constants:

A = 7.4 x 102!
N = 9,2 (4.3)
Tv = 5 BK
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This equation may be viewed as a generalized Stefan-Boltzmann
equation for neutrino emission. The value of N approaches

9 in the relativistic limit (KT > m& ).

write 9€E v c , (& _,,=
ar = "' Ep 1 (4.4)
Then Eq.(4.1) becomes
n
-E’l=ﬂcii£ =i(£..) (4.5)
dt vdt p T\’

The subscripts M have been dropped-~they are to be under-
stood in the sequel.
Eq.(4.5) may be coupled with Eq.(3.5) to solve for T

and p as functions of t for constant M. Eqg.(3.5) is

dv dE dE, = (3.5)
- P + + = .
(Fre* &) t a0 |
Since v 1is the volume occupied by a unit mass, v = i

p

Thus, Eq.(3.5) becomes

P d dE 4T A T n
o7 3t 3T at ? ( T ) (4.6)

Substituting Eq.(4.5) into Egq.(4.6) we have

P _d_E. aT

- (1 + C — = 4.
e T ( 'r\) v 3% 0 (4.7)
We write P = pRT. Then Eq. (4.7) becomes:
RT dp _ (1 + f‘) C aT =0 (4.8)
p dt v dt

The solution of Eq.(4.8) is:

p(M,t) - , T(M, t) (14n)c, /R (4.9)
o (M,0) ' T(4,0)
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where 0o (M,0) and T(M,0) are the initial distributions of p

and T as functions of M at t

is close to 3, since

cV = 2.7R

= 0. The exponent

(1+m)ey = «

R

(4.10)

The value of ¢y j5 from a table prepared by Chandrasekhar (18).

Substituting Eq.(4.9) into Eq.(4.5) we obtain:

e 9T _ aln
v - T
dt ——
P (T )
[o R
To
aT _ A T ()% 1 -
&< =2 T2 (4.11)
- n (4.12)
Tv p(0) nc,
then EE - gtn—a
dt (4.13)
The solution of Eq.(4.13) is
7~ (n-a-1)
— = gt + const. (4.14)
-(n-a-1)
At t =0, T = T (0); so Eq.(4.14) becomes
T = 1
1 n-a-1 ;} 1/(n-0-1) (4.15)
[ ] - (n-a-1)g
T (0)
= T(0)

T1-(n-a-1)[1(0) ]

gt }

n-0-1 1/(n-a-1)
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Substituting g into the coefficient of t in Eq.(4.15)

we have
B = (n-a-1) [T(O)J(n_a-l)g
= (n-0-1) (T(0))P™*1 2 ((0))* _1
T, p(0) nc,
A ()™ _1

= (n-0-1) J(g) (T\) } o) (4.16)
Now c,T(0) = E (T(0))
and - dEv)__ A lT(O) " (4.17)

dt "9 p(g) T,

Define = dE

B el (4.18)

T is the relaxation time for cooling by neutrinos. Then

Eq.(4.16) becomes:

L (n-a-1) 1

B (4.19)
n T
Define t°D = %- so that
T = T (Pl)fF | (4.20)
_ n-g-1
(1 - 3
t =_ N1 __ 7T

® (n-a-1)
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From Ref.(12), (also see Sect. II)p = 6 x 10°g/cms, at
T’ =5, T & 103-sec. N =~ 0.05 (See Appendix II)( n —a =1)Z 5,
thus t_=0.01 T= 10 sec and at T, = 6.9, P= 107 g/cms,
T = 100 sec, t_ = 1 sec.

Mathematically T = @ at t = t_. It is very tempting
to assign t_as the time scale for stellar collapse. But we
may not do this because Eq.(4.20) has been obtained with the
assumption that the hydrostatic equilibrium condition
(Egs.(3.1) and (3.2)) are strictly valid. We have neglected
the radiation pressure and used a number of other approximations.

Physically t may be assigned as the characteristic time
for the evolution of the core. When t approaches t the
kinetic energy of the contracting mass of the core is already
so great that the condition of hydrostatic equilibrium
(Egs.(3.1) and (3.2)) do not provide an adequate description.
The kinetic energy comes from gravitational contraction so that
we must add another term on the right hand side of Egq.(3.18)
and Eq.(3.1) to take care of it. In the case of Eq.(3.18)
this term effectively increases the rate of contraction and
the effect is to make tw even smaller--which means the
contraction process proceeds even faster.

What is the rate of contraction of the core? To estimate
it we need to work out both the spatial and the time dependence

of p and T, from which we may obtain the rate of shrinkage
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of the core. We shall solve a particular model in the next

section.

V. The -Contraction Rate of a Specific Model

We shall use the model for Type II supernova studied by
Hoyle and Fowler(3). Their work is based on the following
assumptions:

1) The mass of the star is divided between the core and
the envelope in the ratio 2:1.

2) The core, with nearly constant He » posSsesses a
structure similar to that of main sequence stars of uniform

composition, known to be similar to that of the standard

model(lg).
Th
- p = *Hef 73 (5.1)
3R(1-8)
2M A
- R ) 4'
1 -8 =0.0030 (3%) poB (5.2)

P is the ratio of gas pressure to total pressure. In the

3 :
()’J

work of Hoyle and Fowler e = 2.1. Egs.(5.1]) and (5.2) are

taken from Ref.(3).

From Eq.(5.2) with M = 30 M o they obtained f = 0.4.
Eq.(5.1) becomes
P = 4.3 x 104 Tﬂ3 g/cma (5.3)
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We now compute the rate of contraction of the core

with the parameters given by their model. Eq.(5.3), together

with Egs.(3.1) and (3.2), allows us to solve for o and T

as functions of r. This involves the use of the solution of

the standard Lane-Emden equation of index n = 3(20).
The solutions are:
b [ ( k )4 3 1-n-r 1/3 4/3 4/3 ( )
= — - = Kp 5.4
PEmP a ﬁ4 J P
p.E) - p (B)6 2 (5) (5.5)
T(s.t) = T_(0)p () (5.6)
r(t) = alt)e (5.7)
(n+1)K % l-n
alt) =[ 45— 1 [P ()] 2n (5.8)
n = polytropic index, ( = 3 in our case)

where g (g) is the Lane-Emden function of index
aQ

so that § (0) = 1. # (8) has a zero at § = §,
2 R

3 normalized

~ 6.9

~

which is taken to be the natural boundary of the core. From

a table prepared by Chandrasekhar(zl)

, forg = 0.4,

M
-— 2 — -_ '] = i
(M ) M = 87.04 at §=8-. For;% 2.1 the mass contained

in the core is around 20 M, so that the radius of the core is

R =qf, ¥ 6.9. The mass of the core determined in this

€

way equals 2/3(30M,) which is consistent with assumption (1).
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From Eqg.(4.9):
(1+n)c
M, t - T (M, —
p( ) o (M, t) - v (4.9)

pm,00 L T(M,0)

and from the numerical values of m and (x and Eq. (4.10)
we find the‘exponent.(l+q)c;/R¢is very close to 3. Eq.(4.9)
with this exponent is the same equation used by Hoyle and
Fowler. This model star therefore contracts homologously.
In the log P -log T plane Ehe initial structure is a
straight line of slope 3. The maximum abscissa and ordinate
of the line are determined by the values of 2 and T at the
center of the star. Later as time elapses Pc and T, will
increase according to Eq.(4.9) and Eq.(4.20).

Eq.(4.9) and (5.3) are of the same form. Therefore in
Egs.(5.5) and (5.6) the time dependence appears in p, and

Tc only. The radius of the coreRt = 6.9 . The time rate

of change of Rc is then

dRe _ 6.9 da
dat dat

Assuming B, u¢ are not rapidly varying functions of

t, then
do = -1 ( k% e~V ap;
at 3 { G J at

_ 1 { K } L 0. - 1/3  dlnoc
nG at
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Numerically
'k ¢+ 3 1-8 1/3 15
K=[(C—"") 3 )i = 2.8 X 10%- (5.11)
HeMe B+
G = 6.67 x 1077
da 11 - /3 ain
3c = - 0.387 X 10*?p Pe (5.12)
dR, da il -/s dinp
== by =27 x 10 pg T
(5.13)
For , -
e = 10 ‘?/M
dR dlnp
cC _ _ 9 C
—d-t— = 1.25 x 10 at (5.138.)
From Egs.(4.20) and (4.9) we have
3 l
dlnp, m=a-I
= te 1-t
at - tq,) (5.14)
At T =5 x 1oq OK, ty, = 10 sec and the contraction rate

of the core is close to 7.5 x 10r7 cm/sec at t = 0 (as has been
remarked in Sect. IV, <this method calculation will give the
most reliable results near t = 0). At T = 6.9 x 10q °K, the
critical temperature for iron-helium conversion, t, = 1 sec,
the contraction rate of the core at t = 0 is 7.5 x 10% cm/sec.

The radius of the core Rc is agf, = 6.5a . Numerically

at p = 10" g/cm®
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A ~y3
K ' 9
R = 6.9 x km) [pc (t):l =4.7 x 10° cm (5.15)
The contracting time scale, 71,44y ., defined as
B
Tecont = [GRc

dt (5.16)

is around 50 seconds at T = 5 x 10° ©°K and only 5 seconds

at T = 6.9 x 10° °K. This is comparable to the free fall time tF

which is given by

" R

t = —_— 5.17
e 712%] (5.17)
For our case, R = 3.75 x 10° cm, Mg = 20 Mg, ty; ¥ 5 sec.

This calculation demonstrates that at T = 6.9 x 10° °K a

condifion very similar to free fall conditions obtains. This
free fall condition is initiated by the rapid energy loss due to
neutrino emission. Obviously a better computation may be made
starting at lower temperatures (say, 2 BK) taking into account
the kinetic energy of the contracting mass, and the possible
transfer of radiation energy, and following the evolution of

the core to the "implosion" point. Whatever these refine-

ments may add, we believe nuclear fuel capable of undergoing

fusion in a short time scale and will start to explode in

the envelope somewhat before the temperature is reached in
the core at which the iron-helium conversion occurs in large

scale. The resulting explosion is believed to be a supernova.

¥
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VI. Discussions

In their paper(3)

Hoyle and Fowler stated that the collapse
of the core is due to the iron-helium phase change. We have
found, at the temperature at which the phase changes, the core
is already collapsing because of energy dissipation by neutrino
emission. In our calculation we have neglected the part of
the gravitational energy that becomes kinetic energy of the
contracting mass. If this kinetic energy is taken into account
the free fall condition will be achieved at a temperature even
lower than 6.9 x 10 CK. After the supernova is formed, we
are not certain to what degree the iron-helium conversion may
have proceeded, since it is not a necessary condition for
collapse*,

This calculation indicates that a proper theory for

presupernova stars should include the dynamics of a contracting

core due to the neutrino process.

* A. G. W. Cameron (private communication) suggested a model
for population I presupernova stars in which the central
density at T = 6.9 x 10? °k is around 107 g/cms. In such a
model the cause of stellar collapse would be entirely due to
iron-helium conversion.
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Fiqure Captions

The rate of energy loss due to the annihilation

process (2.1) logm<_ dU”> is plotted against T
dt

for different values of logyN,, where N, is the
number density for electrons excluding pairs

(Ref. (12)). log,N, = O corresponds to a matter
density of 3 x 10° u, g/cm® where pe is the molec-

ular weight for electrons. dU,, is measured in

dt

units of ergs/cm®-sec and T in units of BK.

Numbers attached to curves are values of log,N..
The rate of energy loss of (2.1) as a function
of density. logm(T dUQ) is plotted against

dat

logyN, for different values of Ty Ty is T

measured in BK.




r

24

22

14

04

— 005 |

|

j!ITI'

N

15 2 25

ce o e d oy gl

T

3

I

l

06 08 |

T

Fig. 1



Fig. 2

Ol o] Ol | ™ N < —_ N
- v
' D T I e _\%_ 'R D T R N R A R
I 8§ 8 @ fe ¢ o o o o
3l5"E
Lo
3



26
REFERENCES

Sung Hui Yao (‘E?i‘%?fgﬁ§ ) (History of the Administrative
Statutes of the Sung Dynasty) Chap. 52, P. 2B (compiled
aréund 1300 A.D.) Translation by J. J. L. Duyvendak

+ 9
(*The Guest Star of 1054 A.D."), T'oung Pao (%11'2_, /\rcLHeg
concernant 1'Histoire des Langues, la Géagraphie,
1'Ethnographie et les Arts de l'Asie Orientale, Leiden)
36, 174 (1942)). Translation is also available in J.
Needham's book: "Science and Civilization in China",
Vol. III, P. 427 (Cambridge University Press, 1959).
From the ancient description modern astronomers computed
the peak luminosity to be 10 L ; the exponential factor
of the decay time of the luminosity to be 55 days.
Burbidge, E. M., Burbidge, G. R., Fowler, W. A., and
Hoyle, F. 1957, Rev. Mod. Phys. 29, 547.
Hoyle, F., and Fowler, W. A., 1960, Astrophysical Journal
132, 565.
Hoyle, F., 1946, Monthly Notices. Roy. Astron. Soc.,
106, 343.
A. G. W., private communication (to be published).
Gamow, G. and Schd&nberg, M., 1941, Phys. Rev. 59, 539.
Pontecorvo, B. M., 1959, JETP 9, 1148.

Cameron, A. G. W., 1959, Astrophysical Journal, 130, 452.



(o W GHE WD G TN TN Bh OGN BGR U U0 55 08 00 OGN AN AN e oD o B

10.

11.

12.

13.

14.

15,

le.

17.

18.

19.

20.

21.

27

Chiu, H. Y., 1961, Annals of Physics, 15, 1.

Chiu, H. Y., and Morrison, P. 1960, Phys. Rev. Let. 5,
573.

Chiu, H. Y., and Stabler, R., 1961, Phys. Rev. 122, 1317.
Chiu, H. Y., 1961, Phys. Rev. 123, 1040.

See, for example, M. Schwarzschild, "Structure and
Evolution of the Stars", Princeton University Press (1958),
Chap. 3.

Chiu, H. Y., Neutrino Emission Processes, Stellar Evolution
and Supernovae, Part II. (To be published in Annals of
Phys.).

Schwarzschild, M.. op. cit. p. 71.

Sampson, D. H., "Electron-Positron Pairs at Very High
Temperatures®”. (To be published in Astrophysical Journal).
Schwarzschild, M., op. cit., p. 33.

Chandrasekhar, S., "An Introduction to the Study of
Stellar Structure®, Dover Publications (1939), Table 24,
p. 397.

For a description of standard model, see, e.g., Chandra-
sekhar, S., op. cit., p. 228.

Emden, R., "Gaskugeln", Leipzig (1907). Chap. 5. (out of
print).

Chandrasekhar, S., op. cit., Table 6, p. 229.




28
APPENDIX I -- TABLE OF NOTATIONS

Stefan-Boltzmann Constant (= 7.55 x 107f ergs/(°K)*-sec)

mass number of a nucleus

(1 +n)Cy

R
ratio of gas pressure to total pressure.
See Eq.(4.16)
= 10° °K (one Billion degrees Kelvin)
light velocity (= 3 x 1oﬁ cm/sec)
specific heat at constant volume

the rate of neutrino energy loss in ergs per gram per secC

the total energy of » star (in ergs)
the total gravitational energy ~f a star

the internal energy (including thermal energy and
Fermi enerqy) in ergs per gram

the total internal energy of the star

rate of net energy release per gram of stellar matter
integrated radiative energy flux from 5 = 0 to t = ©
See Eq. (4.13;

gravitational constant (= 6.67 x 10"8 d em® g~%)
Boltzmann constant

See Eq.(5.4)

opacity coefficient
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electromagnetic luminosity (total electrcmagnetic
energy flux of a star) (in ergs/sec)

solar luminosity (= 3.78 x 10® ergs/sec)
mass inside a shell of radius r

mass of protons

solar mass (= 1.985 x 10339)

average number of nucleons per electron

polytropic index

3B _,
Ep
pressure

density (in g-cm™%)

initial value of density

gas constant (= 8.32 x 10~”ergs mole~" deg~'}
time

temperature (in OK)

critical temperature for iron-helium phase change

T in units of BK

initial values of T

relaxation time for cooling by neutrinos. See Eq.(4.18)
contraction time scale. See Eq. (5.16)

energy density (in ergs cm~?®)

rate of neutrino energy loss per cm® per sec
specific volume (volume occupied by a unit of mass
= 1/p) (in cn® g=') |

volume (in units of cm®)

atomic number
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APPENDIX II

Here we tabulate a few numbers for (gg - 1)-;4 as a
Ep

function of T. The density is taken from the equation

P =4.3 x 10° T°, g/cm®.

T, log, P 1 =(%% - 1)
1 4.6332 0.675
2 5.5362 0.180
3 6.0654 0.092
4 6.4392 0.024
5 6.7323 0.027
6 6.9684 0.034
7 7.1682 0.035

3P is obtained as follows: P includes the radiation pressure
Ep

and electron pressure (including pairs) and Ep = U is the

energy density of radiation, electron pair energy (including their
rest energy) and the electronic energy (less the rest energy).

The reason we include the rest energy of pairs to the total energy
density is the energy of creating pairs is supplied by the

gravitational contraction. The values of P and Ep are taken




--i--{

from a machine calculation of energy and pressure integrals
of an electron gas and radiation in equilibrium. This
calculation (performed by S. Tsuruta) is to be published.

In the above table the contribution of heavy nuclei is

not included since they do not alter the value of 3P by more
Ep

than 2%, and that of 9 by more than 0.02.
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